
fired power stations, has been used in mass concrete to 
reduce the beat of hydration and cracking at early ages. 
Also, FA concrete increases long-term compressive 
strength and durability of concrete structures (1). FA con­ 
cretes may have better strength and durability performance 
when they are prepared at lower water to binder ratios. 

For the last two decades, the different modeling methods 
based on artificial neural networks (ANN) and fuzzy logic 
(FL) systems have become popular and has been used by 
many researchers for a variety of engineering applications. 
The basic strategy for developing ANN and FL systems 
based models for material behavior is to train ANN and 
FL systems on the results of a series of experiments using 
that material. If the experimental results contain the rele­ 
vant information about the material behavior, then the 
trained ANN and FL systems will contain sufficient infor­ 
mation about material's behavior to qualify as a material 
model. Such a trained ANN and FL systems not only 
would be able to reproduce the experimental results, but 
also they would be able to approximate the results in other 
experiments trough their generalization capability (5). 
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New trends in environmental regulations related to dis­ 
posal of wastes such as fly ash (FA) or ground granulated 
blast furnace slag have initiated increasing interests in 
using the wastes as construction materials partially replac­ 
ing Portland cement in concrete [1). FA has been com­ 
monly used to replace part of cement in concrete, and the 
percentage of replacement ranges from about 200.lo (low 
volume FA) to more than 500/o (high volume FA) of the 
total cementitious materials (2). Furthermore, if the early 
strength is not an important factor, FA as high as 600/o 
can be used. It is a known fact that fly ashes generally have 
negative effects on the concrete strength, particularly at the 
early ages [3,4). Especially, FA, the ash precipitated electro­ 
statically or mechanically from the exhaust gases of coal- 

1. Introduction 

Keywords: Compressive strength; Fly ash: Artificial neural networks; Fuzzy logic 

In this study, artificial neural networks and fuzzy logic models for predicting the 7, 28 and 90 days compressive strength of concretes 
containing high-lime and low-lime fly ashes have been developed. For purpose of constructing these models, 52 different mixes with 180 
specimens were gathered from the literature. The data used in the artificial neural networks and fuzzy logic models are arranged in a 
format of nine input parameters that cover the day. Portland cement, water, sand, crushed stone I (4-8 mm), crushed stone II 
(8-16 mm), high range water reducing agent replacement ratio, fly ash replacement ratio and CaO, and an output parameter which is 
compressive strength of concrete. In the models of the training and testing results have shown that artificial neural networks and fuzzy 
logic systems have strong potential for predicting 7, 28 and 90 days compressive strength of concretes containing fly ash. 
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model. Fig. I. The system used in the A 

Hidden 
Layer 

Layer 

ANN model developed in this research has nine neurons 
in the input layer and one neurons in the output layer as 

2. I. Neural network model structure and parameters 

where ix is constant used to control the slope of the semi­ 
linear region. The sigmoid nonlinearity activates in every 
layer except in the input layer [11, 13]. The sigmoid function 
represented by Eq. (2) gives outputs in (0, I). As the 
sigmoid processor represents a continuous function it is 
especially used in non-linear descriptions. Because its 
derivatives can be determined easily with regard to the 
parameters within (net), variable [5, 11-13]. 

(2) 
I 

(out). =/(net).= ( l 
J J I + e"" net 1 

where (net), is the weighted sum of the j. neuron for the in­ 
put received from the preceding layer with n neurons, ll'ij is 
the weight between thej. neuron in the preceding layer, x, is 
the output of the i. neuron in the preceding layer [5, 11]. b a 
fix value as internal addition and 2: represents sum func­ 
tion. Activation function is a function that processes the 
net input obtained from sum function and determines the 
cell output. In general for multilayer receptive models as 
the activation function (10) sigmoid function is used. The 
output of the j. neuron ( outj, is calculated employing Eq. 
(2) with a sigmoid function as follows [5, 11): 

(1) 
n 

(net)j = L wijx; + b 
i=l 

net input that comes to a celJ [12-16]. The weighted sums of 
the input components (net), are calculated by using the fol­ 
lowing equation: 

Artificial neural networks (ANN) were developed to 
model the human brain. Even an ANN fairly simple and 
small in size when compared to the human brain, has some 
powerful characteristics in knowledge and information pro­ 
cessing due to its similarity to the human brain. Therefore, 
an ANN can be a powerful tool for engineering applica­ 
tions. The first studies on ANN are supposed to have 
started in 1943. Afterwards, as a second hit, in 1958 Rosen­ 
blatt [7) devised a machine called the perceptron that 
operated much in the same way as the human mind. 
Rosenblatt's perceptrons consist of "sensory" units con­ 
nected to a single layer of McCulloch and Pitts [8) neurons. 
Rumelhardt et al. [9) derived a learning algorithm for per­ 
ceptron networks with constituted hidden units. Their 
learning algorithm is called back-propagation and is now 
the most widely used learning algorithm. As a result of these 
studies, together with the developments in computer tech­ 
nology, use of ANN has become more efficient after 1980 
[10-12]. In recent years, ANN has been applied to many 
civil engineering problems with some degree of success. In 
civil engineering, neural networks have been applied to 
the detection of structural damage, structural system identi­ 
fication, modeling of material behavior, structural optimi­ 
zation, structural control, ground water monitoring, 
prediction of settlement of shallow foundation, and con­ 
crete mix proportions [ 13]. 

An artificial neuron is composed of five main parts: 
inputs, weights, sum function, activation function and out­ 
puts. Inputs are information that enters the cell from other 
cells of from external world. Weights are values that 
express the effect of an input set or another process element 
in the previous layer on this process element. Sum function 
is a function that calculates the effect of inputs and weights 
totally on this process element. This function calculates the 

2. Artificial neural networks 

The aim of this study is to build models in ANN and FL 
systems to evaluate the effect of FA on compressive 
strength of concrete. For purpose of constructing these 
models, 52 different mixes with 180 specimens of the 7, 
28 and 90 days compressive strength experimental results 
of concretes containing FA used in training and testing 
for ANN and FL systems were gathered from the technical 
literature [6]. These concretes obtained from 52 different 
mixes, containing Portland cement and FA, were manufac­ 
tured with three different partial FA replacement ratios 
(100/o, 200/o and 40%) using two different high-lime and 
two different low-lime fly ashes. In training of the models; 
day (D), Portland cement (PC), water (W), sand (S), 
crushed stone I (CS-I), crushed stone II (CS-II), high range 
water reducing agent (WRA), fly ash (FA) and CaO were 
entered as input; while compressive strength (fc) values 
were used as outputs. The models were trained with 120 
data of experimental results and then remainders were used 
as only experimental input values for testing and values 
similar to the experimental results were obtained. 
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Fig. 2. Fuzzy subsets. 
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A general fuzzy inference system (FIS) has basically four 
components: these fuzzification, fuzzy rule base, fuzzy out­ 
put engine and defuzzification [12,24]. Moreover, input and 
output data can be added. Fuzzification converts each piece 
of input data to degrees of membership by a lookup in one 
or more several membership functions [24]. Fu==Y rule base 
contains rules that include all possible fuzzy relation 
between inputs and outputs. These rules are expressed in 
the IF-THEN format. There are basically two kinds of 
fuzzy rules. In this study, the Sugeno-type fuzzy rules were 
constituted. Fu==Y inference engine takes into consideration 
all the fuzzy rules in the fuzzy rule base and learns how to 

3.1. Fuzzy logic inference system 

logic (FL) replacing Aristotelian logic which has two pos­ 
sibilities only. FL concept provides a natural way of deal­ 
ing with problems in which the source of imprecision is 
the absence of sharply defined criteria rather than the pres­ 
ence of random variables [18,19]. Herein, uncertainties do 
not mean random, probabilistic and stochastic variations, 
all of which are based on the numerical data. Fuzzy set the­ 
ory provides a systematic calculus to deal with such infor­ 
mation linguistically. Fuzzy approach performs numerical 
computation by using linguistic labels stimulated by mem­ 
bership functions. Therefore, Zadeh [ 17] introduced lin­ 
guistic variables as variables whose values are sentences 
in a natural or artificial language [ 19]. Although FL was 
brought forward by Zadeh [ 17] in 1965, fuzzy concepts 
and systems attracted attention after a real control applica­ 
tion in 1975 conducted by Mamdani and Assilian [20-22]. 

The key idea in FL is the allowance of partial belongings 
of any object to different subsets of the universal set instead 
of belonging to a single set totally. Partial belonging to set 
can be described numerically by a membership function 
which assumes values between 0 and I contain. For 
instance, Fig. 2 shows a typical membership function for 
small, medium and large class sizes in a universe, U. Hence, 
these verbal assignments are fuzzy subsets of the universal 
set. In this figure, set values less than 2 are definitely 
"small"; those between 4 and 6 are certainly "medium"; 
while values larger than 8 are definitely "large". However, 
intermediate values such as 2.2 partially belong to the sub­ 
sets "small" and "medium". In fuzzy terminology 2.2 has a 
membership value of 0.9 in "small" and 0.1 in "medium", 
but 0.0 in "large" subsets [18, 19,23]. 
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The concept of "fuzzy set" was preliminarily introduced 
by Zadeh [17], who pioneered the development of fuzzy 

3. Fuzzy logic 

• Number of input layer units= 9 
• Number of hidden layer= I 
• Number of hidden layer units= 11 
• Number of output layer units= I 
• Momentum rate= 0.90 
• Learning rate= 0.75 
• Error after learning= 0.000163 
• Learning cycle= 10.000 

demonstrated in Fig. I. The limit values of input and output 
variables used in ANN model are listed in Table I. One hid­ 
den layer with 11 neurons was used in the architecture of 
multilayer neural network due to its minimum absolute per­ 
centage error values for training and testing sets. The neu­ 
rons of neighboring layers are fully interconnected by 
weights. Finally, the output layer neurons produce the net­ 
work prediction as a result. In this study, the back-propaga­ 
tion training algorithm has been utilized in feed-forward 
one hidden layers. Back-propagation algorithm, as one of 
the most well-known training algorithms for the multilayer 
perceptron, is a gradient descent technique to minimize the 
error for a particular training pattern in which it adjust the 
weights by a small amount at a time [5]. Neural networks, 
with their remarkable ability to derive meaning from com­ 
plicated or imprecise data, can be used to extract patterns 
and detect trends that are too complex to be noticed by 
other computer techniques due to adaptive learning. There­ 
fore, ANN can be used for a particular problem when devi­ 
ation in the available data is expected and accepted and also 
when a defined methodology is not available, as in the case 
of present study [13]. The non-linear sigmoid function was 
used in the hidden layer and the cell outputs at the output 
layer. Momentum rate and learning rate values were deter­ 
mined and the model was trained through iterations. The 
trained model was only tested with the input values and 
the results found were close to experiment results. The val­ 
ues of parameters used in this research are as follows: 

Minimum Maximum 

Cement (kg/m3) 232.20 512.00 
Water (kg/m3) 115.00 184.00 
Sand (kg/m3) 500.00 551.00 
Crushed stone I (kg/m1) 256.00 282.00 
Crushed stone II (kg/rrr') 877.00 964.00 
WRA (kg/m1) 30.00 35.80 
Fly ash (kg/m1) 0.00 204.80 
Ca0(%) 2.00 20.30 
Compressive strength (MPa) 7.10 87.10 

Data used in training and testing the 
models 

Input/output variables 

Table 1 
The input and output quantities used in models 
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Fig. 3. Membership functions of input variables. 
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If =1 and =2 are constants instead of linear equations, 
then we have first-order Takagi, Sugeno and Kang fuzzy 
model [25-29]. The basic learning rule of adaptive neuro­ 
fuzzy inference system is the back-propagation gradient 
descent, which calculates error signals recursively from 

Rule I: IF xis A1 andy is B1, THEN z1 =p1x+q1y+r1 

Rule2: IF xis A2 and y is B2, THEN z2 = p2'r + qiY + ri 

where m denotes number of rules, n defines number of data 
points, and µA is the membership function of fuzzy set A. 
Another important issue affecting the performance of a 
FIS is the partitioning of input space. In this context, there 
are several partitioning techniques, such as grid partition­ 
ing and tree partitioning [12,25,28]. Considering a first-or­ 
der Sugeno-type FIS, a fuzzy model contains two rules 
[26,29]: 

(3) 

parameterized non-linear mapping of a Sugeno-type FIS 
may be given in the following equation: 

E:1 w;n~=lµA' (xj) F= I E:1 n~=lµA. {-lj) 
I 

!·~~ 
0 10 20 30 

WRA, kg/m3 

!·:~ 
120 140 160 180 

W, kg/m3 

~1~4-5 1- 3 

-8 0.5 

~ 0 '-'----''---'-~'----'-~'----'-~...___, 
I 0 20 30 40 50 60 70 80 90 

D,day 

transform a set of inputs to corresponding outputs. There 
are basically two kinds of inference operators: minimiza­ 
tion (min) and product (prod) [12,24]. In this study, the 
prod method was employed because of its better perfor­ 
mance. Defuzzification converts the resulting fuzzy outputs 
from the fuzzy inference engine to a number [24]. There are 
many defuzzification methods such as weighted average 
(wtaver) or weighted sum (wtsurn). In this study, the 
weighted average method was employed. 

Fuzzy inference systems are powerful tools for the sim­ 
ulation of non-linear behaviors with the help of FL and lin­ 
guistic fuzzy rules [25]. A FIS employing fuzzy "IF-THEN 
rules" can model the qualitative aspects of human knowl­ 
edge and reasoning processes without employing precise 
quantitative analyses [21-29]. There are various FIS meth­ 
odologies, such as Mamdani and Sugeno [20-27]. The 
fuzzy modeling or fuzzy identification, first explored sys­ 
tematically by Sugeno and Kang [26] and Takagi and 
Sugeno [27], has found numerous practical applications 
in control, prediction and FIS [26-29]. In the Sugeno 
FIS, outcomes of fuzzy rules are characterized by function 
crisp outputs. From mathematical viewpoint, if F denotes a 
real continuous mapping within a closed interval, then the 
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Fig. 5. Comparison of 7-day Jc exp. results with A and FL results. 
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In addition, the absolute fraction of variance (R2) and 
mean absolute percentage error (MAPE) are calculated 
(5, 12) by using the following equations: 

(4) RMS= 

In this study, the error arose during the training and 
testing in ANN and FL models can be expressed as a 
root-mean-squared (RMS) error and is calculated (5, 17) 
by using the following equation: 

4. Results and discussion 

employed for testing. All of the proposed membership 
functions in this study consist of nine inputs and one out­ 
put. The membership function plots of input variables used 
in the training are shown in Fig. 3. In Fig. 4, based on the 
results of prediction runs of the model; shows the effects of 
two factors at a time on each surface plot of the fc. The 
effects of PC, FA and CaO on fc are shown in Fig. 4a 
and b. As can be seen in Fig. 4a and b, increasing of FA 
leads to a gradual increase of fc. 

In order to apply for the Sugeno-type FIS in FL system, 
Jc results determined from literature were divided into the 
training and testing parts. Herein, 120 data of experiment 
results were used for training whereas 60 ones were 

R;: IF (D is Drnf.) and (PC is PCmf;) and (W is Wmf;) 
and (S is Smf.) and (CS-I is CS-Imf;) and (CS-II is 
CS-llmf;) and (WRA is WRAmf;) and (FA is FAmf;) 
and (CaO is Ca0mf1) THEN lfc is fcmf1) 

(i = I, 2, ... , 5) 

Fuzzy modeling is a system identification task, which 
involves two phases: structure identification and parameter 
prediction. Structure identification contains the issues like 
selecting relevant input variables, choosing a specific type 
of FIS, determining the number of fuzzy rules, their ante­ 
cedents and consequents, and determining the type and 
number of membership functions (29]. Parameter predic­ 
tion is determination of aimed values response to evident 
input values of constituted model. For this aim, in the 
study 180 data experiment results were used in the pro­ 
cesses of Sugeno-type fuzzy inference model in FL system. 
The limit values of input and output variables used in 
Sugeno-type fuzzy inference model are listed in Table I. 

The compact graphical form, which represents a fuzzy 
rule based system, is named fuzzy associate memory table. 
In the rule base, fuzzy variables were connected with 
"prod" (fuzzy and) operators and rules were associated 
using "max-min" decomposition technique. Moreover, 
training continued for over 1000 epochs and process termi­ 
nated by the observation of the stability in error reduction. 
The membership functions of the training data set for the 
input variables of fc are of the triangular type and premise 
parameter sub-spaces were determined by using clustering 
of the training data set. Thus, five rules being obtained as 
in the following: 

3.2. Fuzzy logic inference system model 

the output layer backward to the input nodes. This learning 
rule is exactly the same as the back-propagation learning 
rule used in the common feed-forward neural networks 
(12,25-29]. 

Fig. 4. Some inputs withfc surface, (a) combined effects PC and FA on/"' (b) combined effects FA and CaO onfc. 

a b 
60 120 

., 40 .. 90 
ll.. ll.. :a 20 ~ 60 
~ ~ 30 

0 
20 

20( 

FA, k!Yrn3 0 CaO,% 0 0 FA,kwrn3 

309 i.B. Topcu, M. Sandemir I Computational Materials Science 41 ( 2015) 305-31 I 

 

 

 



Table 2 
Comparison of fc experimental results with testing results obtained from A and FL 

7-day compressive strength 28-day compressive strength 90-day compressive strength 

Experimental A model FL model Experimental A model FL model Experimental A model FL model 

22.70 24.47 23.70 38.50 42.32 40.20 46.10 54.47 44.96 
22.90 22.77 19.63 32.30 40.00 32.51 41.40 50.19 41.48 
44.20 41.82 48.13 53.80 57.28 57.44 69.60 73.41 72.74 
53.70 53.51 54.41 65.90 64.76 64.64 80.70 79.68 79.18 
58.00 53.72 54.17 66.30 66.96 69.42 86.10 82.98 82.80 
60.50 55.37 58.12 72.70 72.48 73.67 86.30 87.07 86.26 
53.70 48.22 47.55 59.80 62.24 62.69 77.10 78.39 78.20 
15.30 15.99 15.69 33.00 32.49 32.62 41.20 37.92 40.73 
49.80 49.23 50.63 59.20 60.02 58.21 75.90 77.22 76.71 
30.50 31.62 31.96 44.70 43.91 46.52 66.60 65.17 68.65 
41.50 44.46 43.24 65.40 64.96 63.83 85.40 82.29 82.39 
27.20 28.52 26.41 42.70 40.08 41.81 61.30 59.91 62.06 
35.80 36.65 34.99 60.50 58.27 55.85 74.80 71.21 73.27 
22.70 24.47 23.70 37.30 37.40 36.28 43.20 44.73 43.76 
10.50 12.49 10.44 21.10 21.29 20.59 30.30 29.67 29.92 
32.40 30.15 32.43 52.50 54.19 53.25 72.10 72.78 71.24 
16.40 19.22 17.40 28.20 30.00 29.65 44.00 41.93 40.05 
26.00 26.51 28.12 49.40 48.45 47.87 65.70 64.56 66.41 
54.40 56.20 57.46 69.90 68.71 69.16 82.00 81.12 82.46 
24.30 21.01 23.38 39.00 39.53 39.82 54.60 56.41 55.83 

(6) 

in Figs. 5-7 with Table 2, the values obtained from the 
training and testing in ANN and FL models are very closer 
to the experimental results. This case proves that the exper­ 
imental results with ANN and FL models results are all in 
harmony. 

The statistical values for fc values found from training 
and testing in ANN and FL models as RMS, R2 and 
MAPE are also given in Table 3. While the statistical val­ 
ues RMS, R2 and MAPE from training in ANN model 
were found as 1.7099, 99.900/o and 3.3325%, respectively, 
these values were found in testing as 2.8109, 99.72% and 
5.0672%, respectively. Similarly, while the statistical values 
RMS, R2 and MAPE from training in FL model were 
found as 1.7221, 99.89% and 3.6044%, respectively, these 
values were found in testing as 2.0206, 99.86% and 
3.3772%, respectively. All of the statistical values in Table 

(5) 

and FL results. Fig. 7. Comparison of 90-day fc exp. results with A 

90-day experimental compressive strength, MPa 
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I T y = 0.9953x + 0.0323 - -L R2=0.9905 I 
_l_ ~ •=. ' -::r '::! 7 

.W AN testing l ..+ ..+ ..+ 
y = 0.9344x + 4.5501 

r ~ R2 = o.9634 I 2 -t 1 
I 1 ,----., -, --T I 20--~~~~~~~~~~~~~~~~~---- 

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 

I 
_l _l 

90,-;:::===:c:=====;--:::r:::::o=-i==r-:::r:-=-r---r~.--.----, 
85 0 FL training I FL training f, 

t_ 80 <>ANN training y = 0.9932x + 0.42 t 7..l 
~ 75 •FL . L 2 £ tesung _ R = 0.995 
~ 70 •ANN testing 
~65 TTTT 
: 60 FL testing - ~ L 
·~ 55 y=0.9969x-0.1419~ 
~ 50 R2 = 0.9902 
Q, E 45 
Q 

~ 40 
~ 35 
~ 30 
ct 25 

where t is the target value, o is the output value, p is the 
pattern. 

Both experimental studies [6] and training and testing 
results developed by ANN and FL models for 7, 28 and 
90 daysfc results were given in Figs. 5-7. The linear least 
square fit line, its equation and the R2 values are shown 
in these figures for the training and testing data. Also, 
experimental results [6] and testing results obtained from 
ANN and FL models were given in Table 2. As it is visible 

R2 = 1 - (L:;;(t; - ~;)2) 
L:;;(o;) 

MAPE = 
1 
cj :; O;) 

1*100 

Fig. 6. Comparison of 28-day fc exp. results with A and FL results. 
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In order to predict the 7, 28 and 90 days compressive 
strength values of concrete containing high-lime and low­ 
lime FA without attempting any experiments were con­ 
structed models in artificial neural networks and fuzzy 
logic methods. The models were trained with input and 
output data. Using only the input data in trained models 
the 7, 28 and 90 days compressive strength values of con­ 
crete containing Hy ash was predicted. The values are very 
closer to the experimental results obtained from training 
and testing for artificial neural networks and fuzzy logic 
models. RMS, R2 and MAPE statistical values that calcu­ 
lated for comparing experimental results with YSA and 
BM model results have shown this situation. 

As a result, compressive strength values of the Hy ash 
concretes can be predicted in artificial neural networks 
and fuzzy logic models without attempting any experi­ 
ments in a quite short period of time with tiny error rates. 
These conclusions have shown that artificial neural net­ 
works and fuzzy logic are practicable methods for predict­ 
ing compressive strength values of concrete. 

5. ConcJusions 

3 demonstrate that the proposed ANN and FL models are 
suitable and predict thefc values very close to experimental 
values. A small perceptible deviation was observed for the 
calculated values. 

Table 3 
and FL models 

Statistical A FL 
parameters Training Testing Training Testing 

set set set set 

RMS 1.7099 2.8109 1.7221 2.0206 
R2 0.9990 0.9972 0.9989 0.9986 
MAPE 3.332S S.0672 3.6044 3.3772 
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